7/08S

DFSORT': Getting Started

Version 2 Release 3

SC23-6880-30

Chapter 1. What is DFSORT?

DFSORT is IBM's high-performance sort, merge, copy, analysis, and reporting
product for z/OS.

With DFSORT, you can sort, merge, and copy data sets. You can use DFSORT to do
simple tasks such as alphabetizing a list of names, or you can use it to aid complex
tasks such as taking inventory or running a billing system. DFSORT gives you
versatile data handling capabilities at the record, field and bit level.

DFSORT on the World Wide Web

For articles, online documents, news, tips, techniques, examples, and more, visit
the DFSORT Home Page (www.ibm.com/storage/dfsort).

DFSORT FTP site

You can obtain DFSORT articles and examples by anonymous FIP to:
ftp.software.ibm.com/storage/dfsort/mvs/

Data sets, records and fields

The information you manipulate with DFSORT is contained in data sets. The term
data set refers to a file that contains one or more records. Any named group of
records is called a data set. The terms data set and file are synonymous, and are
used interchangeably in this document.

A data set contains the information that you want to sort, copy, or merge. For most
of the processing done by DFSORT, the whole data set is affected. However, some
forms of DFSORT processing involve only certain individual records in that data
set.

Data sets can be cataloged, which permits the data set to be referred to by name
without specifying where the data set is stored. A cataloged data set should not be
confused with a cataloged procedure. A cataloged procedure is a named collection
of JCL stored in a data set, and a cataloged data set is a data set whose name is
recorded by the system.

Throughout this document, the term record refers to a collection of related
information used as a unit, such as one item in a data base or personnel data
about one member of a department. The term field refers to a specific portion of a
record used for a particular category of data, such as an employee's name or
department.

DFSORT can sort, copy or merge fixed-length or variable-length records. The type
and length of a data set is defined by its record format (RECFM) and logical record
length (LRECL). Fixed-length data sets have a RECFM of F, FB, FBS, and so on.
Variable-length data sets have a RECEM of V, VB, VBS, and so on. For simplicity in
this document, the terms "FB data set" and "FB records" are used as short-hand for
fixed-length data sets and records, respectively, and the terms "VB data set" and
"VB records" are used as short-hand for variable-length record data sets and
variable-length records, respectively.

© Copyright IBM Corp. 1983, 2017 3

What is DFSORT?

A data set with RECFM=FB and LRECL=25 is a fixed-length (FB) data set with a
record length of 25-bytes (the B is for blocked). For an FB data set, the LRECL tells
you the length of each record in the data set; all of the records are the same length.
The first data byte of an FB record is in position 1. A record in an FB data set with
LRECL=25 might look like this:

Positions 1-3: Country Code = 'USA'

Positions 4-5: State Code = 'CA'
Positions 6-25: City = 'San Jose' padded with 12 blanks on the right

A data set with RECFM=VB and LRECL=25 is a variable-length (VB) data set with
a maximum record length of 25-bytes. For a VB data set, different records can have
different lengths. The first four bytes of each record contain the Record Descriptor
Word or RDW, and the first two bytes of the RDW contain the length of that
record (in binary). The first data byte of a VB record is in position 5, after the
4-byte RDW in positions 1-4. A record in a VB data set with LRECL=25 might look
like this:

Positions 1-2: Length in RDW = hex O00E = decimal 14
Positions 3-4: Zeros in RDW = hex 0000 = decimal 0
Positions 5-7: Country Code = 'USA'

Positions 8-9: State Code = 'CA'

Positions 10-17: City = 'San Jose'

Unless otherwise noted, the examples in this document process FB data sets, which
are easier to work with and describe. However, special considerations for
processing VB data sets are discussed throughout this document whenever
appropriate.

Sorting data sets

You can use DFSORT to rearrange the records in your data sets. Sorting is
arranging records in either ascending or descending order within a file. Table 2
shows a sample data set of names, first sorted in ascending order, then in
descending order.

Table 2. DFSORT Arranges Information in Ascending and Descending Order

Unsorted Sorted Sorted

Data Set Ascending Descending
Andy Andy Edward
Edward Betty Dan

Carol Carol Carol

Dan Dan Betty

Betty Edward Andy

You can sort data in many different formats. Table 3 on page 5 shows the most
commonly used DFSORT data formats and the format identifiers you use to
specify them.

4 z/0S DFSORT: Getting Started

What is DFSORT?

Table 3. Commonly Used Data Formats

Data Format Format Identifier
EBCDIC (Character) CH

Binary (Unsigned Numeric) BI

Fixed-point (Signed Numeric) FI

Zoned Decimal (Signed Numeric) ZD

Packed Decimal (Signed Numeric) PD

Floating Sign (Signed Numeric) FS

Free Form (Unsigned Numeric) UFF

Free Form (Signed Numeric) SFF

Refer to z/OS DFSORT Application Programming Guide for complete details of the
available formats.

Merging data sets

You can also use DFSORT to merge data sets. DFSORT merges data sets by
combining two or more files of sorted records to form a single data set of sorted
records.

Table 4. DFSORT Merges Two Data Sets into One Data Set

Data Set 1 Data Set 2 Merged Data Set
Andy Amy Amy
Betty Chris Andy
Carol Sue Betty
Dan Carol
Edward Chris
Dan
Edward
Sue

The data sets you merge must be previously sorted into the same order (ascending
or descending).

Copying data sets

DFSORT can also copy data sets without any sorting or merging taking place. You
copy data sets in much the same way that you sort or merge them.

Joining data sets

DFSORT can perform various "join" operations on two data sets by one or more
keys. You can create joined records in a variety of ways including inner join, full
outer join, left outer join, right outer join and unpaired combinations. The two
input data sets can be of different types (fixed, variable, VSAM, and so on) and
have keys in different locations. The records from the two input files can be
processed in a variety of ways before and after they are joined.

What else can you do with DFSORT?

While sorting, merging, or copying data sets, you can also perform other tasks
such as the following;:

* Select a subset of records from an input data set. You can include or omit
records that meet specified criteria. For example, when sorting an input data set

Chapter 1. What is DFSORT? 5

What is DFSORT?

containing records of course documents from many different school
departments, you can sort the documents for only one department.

* Reformat records in a variety of ways. You can build your records one item at a
time, only overlay specific columns, or reformat different records in different
ways. You can edit, change, add or delete fields. You can convert date fields of
one type to another type and perform date field arithmetic. You can perform
find and replace operations on your records. You can perform various operations
on groups of records. You can work with fixed position/length fields directly or
convert variable position/length fields (such as comma separated values) to
fixed parsed fields for further processing. You can also insert blanks, zeros,
strings, current date, future date, past date, current time, sequence numbers,
decimal constants, and the results of arithmetic instructions before, between, and
after input fields. For example, you can create an output data set that contains
character strings and only certain edited fields from the input data set, arranged
differently.

* Sum the values in selected records while sorting or merging (but not while
copying). In the example of a data set containing records of course books, you
can use DFSORT to add up the dollar amounts of books for one school
department.

* Create multiple output data sets and simple or complex reports from a single
pass over an input data set. For example, you can create a different output data
set for the records of each department.

* Convert VB data sets to FB data sets, or convert FB data sets to VB data sets.

* Sample or repeat records.

* Sort, merge, include or omit records according to the collating rules defined in a
selected locale.

* Alter the collating sequence when sorting or merging records (but not while
copying). For example, you can have the lowercase letters collate after the
uppercase letters.

* Sort, merge, or copy Japanese data if the IBM Double Byte Character Set
Ordering Support (DBCS Ordering) (5665-360 Licensed Program, Release 2.0 or
an equivalent product) is used with DFSORT to process the records.

* Sort, merge of Unicode data format records according to the collating rules
defined in a selected collation version.

Creating and running DFSORT jobs

Processing data sets with DFSORT involves two steps:
1. Creating a DFSORT job
2. Running a DFSORT job

You can run a DFSORT job by invoking processing in a number of ways:

* With a JCL EXEC statement, using the name of the program or the name of the
cataloged procedure

* Within programs written in COBOL, PL/I, or basic Assembler language

In this document, the phrases directly or JCL-invoked mean that the DFSORT
program is initiated by a JCL EXEC statement with PGM=SORT or
PGM=ICEMAN. The phrases called by a program or dynamically invoked mean that
the DFSORT program is initiated from another program.

6 z/0S DFSORT: Getting Started

What is DFSORT?

Writing jobs
You can use DFSORT by writing JCL and DFSORT control statements no matter

how your site has installed DFSORT. Part 1 contains instructions on writing JCL
and DFSORT program control statements.

You must prepare JCL statements and DFSORT program control statements to
invoke DFSORT processing. JCL statements are processed by your operating
system. They describe your data sets to the operating system, and initiate DFSORT
processing. DFSORT program control statements are processed by DFSORT. They
describe and initiate the processing you want to do.

Summary of DFSORT control statements

The functions of the most important DFSORT control statements can be
summarized briefly as follows:

SORT Describes the fields for a sort application, or requests a copy application.

MERGE
Describes the fields for a merge application, or requests a copy application.

OPTION
Overrides installation defaults, or requests optional features or a copy
application.

INCLUDE
Describes the criteria to be used to include records before they are sorted,
copied or merged.

OMIT Describes the criteria to be used to omit records before they are sorted,
copied or merged.

INREC
Describes how records are to be reformatted before they are sorted, copied
or merged.

OUTREC
Describes how records are to be reformatted after they are sorted, copied
or merged.

SUM Describes how fields are to be summed after sorting or merging.

OUTFIL
Describes various types of processing to be performed for one or more
output data sets after sorting, copying or merging.

JOINKEYS, JOIN, REFORMAT
Describes a "joinkeys" application for joining two files on one or more
keys.

The functions of the less important DFSORT control statements can be summarized
briefly as follows:

ALTSEQ
Describes changes to the normal translation table.

MODS
Describes user exit routines.

RECORD
Supplies data set record type and length information when needed.

Chapter 1. What is DFSORT? 7

What is DFSORT?

DEBUG
Requests diagnostic features.

END Marks the end of the control statements.

Running jobs

You can run DFSORT jobs directly with a JCL EXEC statement that uses
PGM=SORT or PGM=ICEMAN. Or, you can call DFSORT dynamically from a
COBOL, Assembler, PL/I, or other type of program.

Creating and using the sample data sets

8

Many of the examples in this document refer to the sample data sets
SORT.SAMPIN, SORT.SAMPADD, SORT.BRANCH and SORT.SAMPOUT.
Appendix A, "Creating the Sample Data Sets" shows you how to create your own
copies of these data sets, using a program called ICESAMP shipped with DFSORT,
if you want to try the examples in this document that use them.

Note: Some of the examples use data sets other than SORT.SAMPIN,
SORT.SAMPOUT, SORT.SAMPADD, and SORT.BRANCH. You can either create
data sets from scratch to match the ones used in the text, or else perform a similar
exercise on data sets you already have.

Before you begin, turn to Appendix B, “Descriptions of the sample data sets,” on
page 189. Many of the examples in this document refer to the sample bookstore
data sets as the input data sets, so you should become familiar with them. The
input data sets contain the data that you want arranged or sorted. You must
specify an input data set for every DFSORT job you run. The sample bookstore
data set is named SORT.SAMPIN and the additional bookstore data set is named
SORT.SAMPADD.

Each record in the bookstore data sets has 12 fields (book title, author’s last name,
and so on). A record can be represented by one horizontal row on the page. A field
can be represented by one vertical column on the page.

To sort a data set, you choose one or more fields that you want to use to order the
records (arrange in ascending or descending order). These fields are called control
fields (or, in COBOL, keys).

As you work through the exercises on the following pages, remember that each
entire record is sorted, not just the control field. However, for the sake of simplicity,
the figures in the text show only the control fields being discussed. The sorted
records actually contain all of the fields, but one page is not wide enough to show
them. Appendix B, “Descriptions of the sample data sets,” on page 189, shows all
of the fields in each record. It is also arranged with headings and numbers that
show the byte positions of each field. The numeric fields are in binary format (see
Table 3 on page 5) and therefore will not appear on most displays as they do in
this document. Methods you can use to arrange and view the data are explained in
the chapters on DFSORT functions that follow.

Table 5 on page 9 shows an example of sorted fields. Notice the line of numbers
above the sorted fields. These numbers represent the byte positions of those fields.
You use byte positions to identify fields to DFSORT. The examples show the byte
positions to help you while you are learning to use DFSORT. The byte positions do
not actually appear in any of your processed data sets.

z/0S DFSORT: Getting Started

What is DFSORT?

In Table 5, the first two records, which show nothing in the course department
fields, are general purpose books not required for a particular course. For this
example, the control field is the Course Department field.

Table 5. Sample Bookstore Data Set Sorted by Course Department in Ascending Order

Book Title Course Department Price

1 75 110 114 170 173
LIVING WELL ON A SMALL BUDGET 9900
PICK'S POCKET DICTIONARY 295
INTRODUCTION TO BIOLOGY BIOL 2350
SUPPLYING THE DEMAND BUSIN 1925
STRATEGIC MARKETING BUSIN 2350
COMPUTER LANGUAGES COMP 2600
VIDEO GAME DESIGN COMP 2199
COMPUTERS: AN INTRODUCTION COMP 1899
NUMBERING SYSTEMS COMP 360
SYSTEM PROGRAMMING COMP 3195
INKLINGS: AN ANTHOLOGY OF YOUNG POETS ENGL 595
EDITING SOFTWARE MANUALS ENGL 1450
MODERN ANTHOLOGY OF WOMEN POETS ENGL 450
THE COMPLETE PROOFREADER ENGL 625
SHORT STORIES AND TALL TALES ENGL 1520
THE INDUSTRIAL REVOLUTION HIST 795
EIGHTEENTH CENTURY EUROPE HIST 1790
CRISIS OF THE MIDDLE AGES HIST 1200
INTRODUCTION TO PSYCHOLOGY PSYCH 2200
ADVANCED TOPICS IN PSYCHOANALYSIS PSYCH 2600

Also notice that records in Table 5 with equally collating control fields (in this case,the
same department) appear in their original order. For example, within the
Computer Science department (COMP), the title Video Game Design still appears

before Computers: An Introduction.

You can control whether records with equally collating control fields appear in
their original order or whether DFSORT orders them randomly. The system
programmer sets defaults at installation time that you can change with some
DFSORT options at run time. The examples in this document assume that the
default is for records with equally collating control fields to appear in their original

order.

Summary

DFSORT jobs.

So far in Getting Started you covered the following concepts:

* You can sort, copy, or merge data sets using DFSORT.

* You can write JCL and DFSORT program control statements to create and process

* You can run DFSORT jobs directly or call DFSORT from a program.

In addition, this chapter covered how to use and read the sample data sets provided with
DFSORT. Now continue with tutorials on how to write DFSORT control statements.

Chapter 1. What is DFSORT?

9

What is DFSORT?

10 z/0S DFSORT: Getting Started

Part 2. Learning to write JCL and DFSORT control statements

© Copyright IBM Corp. 1983, 2017 11

12 z/0S DFSORT: Getting Started

Chapter 2. Sorting, merging, and copying data sets

This tutorial shows you how to sort, merge, and copy data sets by writing
DFSORT program control statements that are processed with JCL.

DFSORT program control statements are input in the JCL used to run DFSORT. To
keep the instructions simple, the program control statements are covered first and
the related JCL statements are explained afterward. For most of the tutorials you
will concentrate on JCL-invoked DFSORT, that is, running DFSORT with JCL.
Information on calling DFSORT from a program (dynamic invocation) is presented
in Chapter 9, “Calling DFSORT from a program,” on page 117.

Sorting data sets

To use DFSORT directly (JCL-invoked), write a SORT control statement to describe
the control fields, and the order in which you want them sorted. The control
statements you write are part of the SYSIN data set in the JCL. The SYSIN data set
is typically specified as //SYSIN DD * followed by "inline" control statements (as
shown in the examples in this document). However, a sequential data set, or a
member of a partitioned data set, with the control statements as records can also
be used for the SYSIN data set.

You can use SORT with all of the other DFSORT control statements.

A SORT statement that sorts the bookstore records by the course department field
(as shown in Table 7 on page 14) looks like this:
12 71 80

SORT FIELDS=(110,5,CH,A)

L» Ascending order

Character data

» Length of department field

» Beginning of department field
Make sure that the statement is coded between columns 2 and 71.

Here are the steps for writing this SORT statement:
Table 6. Steps to Create the SORT Statement to Sort by Department

Step Action
1 Leave at least one blank, and type SORT
2 Leave at least one blank and type FIELDS=

© Copyright IBM Corp. 1983, 2017 13

Table 6. Steps to Create the SORT Statement to Sort by Department (continued)

Step Action

3 Type, in parenthesis and separated by commas:

1. Where the course department field begins, relative to the beginning of the
record in the bookstore data set (the first position is byte 1). The course
department field begins at byte 110.

2. The length of the department field in bytes. The department field is 5 bytes
long.

3. A format identifier for the data format. The department field contains
character data, which you specify as CH. (Table 3 on page 5 shows the
codes for the most commonly used data formats.)

4. The letter A, for ascending order.

Remember that although Table 7 shows only certain fields, the displayed fields are
not the only ones in the output data set. Your output data set will more closely
resemble the fold-out of the sample bookstore data set.

Table 7. Sample Bookstore Data Set Sorted by Course Department in Ascending Order

Book Title Course Department
1 110 114
LIVING WELL ON A SMALL BUDGET

PICK'S POCKET DICTIONARY

INTRODUCTION TO BIOLOGY BIOL
SUPPLYING THE DEMAND BUSIN
STRATEGIC MARKETING BUSIN
COMPUTER LANGUAGES COMP
VIDEO GAME DESIGN COMP
COMPUTERS: AN INTRODUCTION COMP
NUMBERING SYSTEMS COMP
SYSTEM PROGRAMMING COMP
INKLINGS: AN ANTHOLOGY OF YOUNG POETS ENGL
EDITING SOFTWARE MANUALS ENGL
MODERN ANTHOLOGY OF WOMEN POETS ENGL
THE COMPLETE PROOFREADER ENGL
SHORT STORIES AND TALL TALES ENGL
THE INDUSTRIAL REVOLUTION HIST
EIGHTEENTH CENTURY EUROPE HIST
CRISES OF THE MIDDLE AGES HIST
INTRODUCTION TO PSYCHOLOGY PSYCH
ADVANCED TOPICS IN PSYCHOANALYSIS PSYCH

14

To sort the records in descending order, specify D instead of A. For example, to
sort the prices for each book in descending order, type:

SORT FIELDS=(170,4,B1,D)

» Descending order

> Price

The sort order is bytes 170 through 173 as binary data in descending sequence.
Table 8 on page 15 shows the results of the sort in descending order.

z/0OS DFSORT: Getting Started

Table 8. Sample Bookstore Data Set Sorted by Price in Descending Order

Book Title Price

1 75 170 173
LIVING WELL ON A SMALL BUDGET 9900
SYSTEM PROGRAMMING 3195
COMPUTER LANGUAGES 2600
ADVANCED TOPICS IN PSYCHOANALYSIS 2600
STRATEGIC MARKETING 2350
INTRODUCTION TO BIOLOGY 2350
INTRODUCTION TO PSYCHOLOGY 2200
VIDEO GAME DESIGN 2199
SUPPLYING THE DEMAND 1925
COMPUTERS: AN INTRODUCTION 1899
EIGHTEENTH CENTURY EUROPE 1790
SHORT STORIES AND TALL TALES 1520
EDITING SOFTWARE MANUALS 1450
CRISES OF THE MIDDLE AGES 1200
THE INDUSTRIAL REVOLUTION 795
THE COMPLETE PROOFREADER 625
INKLINGS: AN ANTHOLOGY OF YOUNG POETS 595
MODERN ANTHOLOGY OF WOMEN POETS 450
NUMBERING SYSTEMS 360
PICK'S POCKET DICTIONARY 295

Sorting by multiple fields

You can further sort the records in the bookstore data set by specifying multiple
control fields. When you specify two or more control fields, you specify them in
the order of greater to lesser priority. Note that control fields might overlap or be
contained within other control fields.

Table 9 on page 16 shows how the records would be sorted if you specified the
following control fields in the order they are listed:

1. Course department

Course number

w N

Instructor's last name

E

Instructor's initials
Book title.

o

So, if two records have the same department, they are sorted by course number. If
they also have the same course number, they are sorted by instructor's last name. If
they also have the same last name, they are sorted by initials. Finally, if they also
have the same initials, they are sorted by title.

Specify the location, length, data format, and order for each of the control fields, as
follows:

Chapter 2. Sorting, merging, and copying data sets 15

SORT FIELDS= (110,5,CH,A,115,5,CH,A,145,15,CH,A,160,2,CH,A,1,75,CH,A)

Book title

L—— » Instructor's
initials

Instructor's
last name

v

» Course number

» Department
The records are sorted as shown in Table 9.
Table 9. Sample Bookstore Data Set Sorted by Multiple Fields
Course Course Instructor's Instructor's
Book Title Department Number Last Name Initials
1 75 110 114 115 119 145 159 160 161
LIVING WELL ON A SMALL BUDGET
PICK'S POCKET DICTIONARY
INTRODUCTION TO BIOLOGY BIOL 80521 GREENBERG HC
STRATEGIC MARKETING BUSIN 70124 LORCH HH
SUPPLYING THE DEMAND BUSIN 70251 MAXWELL RF
NUMBERING SYSTEMS COMP 00032 CHATTERJEE AN
COMPUTER LANGUAGES CcOMP 00032 CHATTERJEE CL
COMPUTERS: AN INTRODUCTION COMP 00032 CHATTERJEE CL
SYSTEM PROGRAMMING COMP 00103 SMITH DC
VIDEO GAME DESIGN COMP 00205 NEUMANN LB
SHORT STORIES AND TALL TALES ENGL 10054 BUCK GR
EDITING SOFTWARE MANUALS ENGL 10347 MADRID MM
THE COMPLETE PROOFREADER ENGL 10347 MADRID MM
INKLINGS: AN ANTHOLOGY OF YOUNG POETS ENGL 10856 FRIEDMAN KR
MODERN ANTHOLOGY OF WOMEN POETS ENGL 10856 FRIEDMAN KR
THE INDUSTRIAL REVOLUTION HIST 50420 GOODGOLD ST
CRISES OF THE MIDDLE AGES HIST 50521 WILLERTON DW
EIGHTEENTH CENTURY EUROPE HIST 50632 BISCARDI HR
INTRODUCTION TO PSYCHOLOGY PSYCH 30016 ZABOSKI RL
ADVANCED TOPICS IN PSYCHOANALYSIS PSYCH 30975 NAKATSU FL

You can often shorten the length of control statements. You can specify fields
together whenever they are next to each other in the record and have the same
data format and order. You can shorten this last statement by specifying the
department and course number together as one field, and the instructor's last name
and initials together as one field.

SORT FIELDS=(110,10,CH,A,145,17,CH,A,1,75,CH,A)

\—b Title

» Instructor's last name and initials

»Department and course number

16 z/0S DFSORT: Getting Started

Also, if all of the control fields have the same data format, you can specify the data
format just once, using the FORMAT={ parameter. For example:

SORT FORMAT=CH,FIELDS=(110,10,A,145,17,A,1,75,A)

If some of the control fields have the same data format, but others don't, you can
specify the FORMAT=f parameter along with the individual data formats. For
example:

SORT FORMAT=CH,FIELDS=(110,10,A,170,4,BI,D,145,17,A,1,75,A)

is equivalent to:
SORT FIELDS=(110,10,CH,A,170,4,BI,D,145,17,CH,A,1,75,CH,A)

example : Sorting UTF16 data and Character data
SORT FIELDS=(5,4,FI,A,345,400,UTF16,D,13,2,CH,A)

Fields

The first four values describe the major control field. It begins on byte 5 of each
record, is 4 bytes long, and contains fixed-point data, and is to be sorted in
ascending order.

The next four values describe the second control field. It begins on byte 345, is 400
bytes long, contains a 16 bit encoding Unicode Transformation Format (UTF16)
data, and is to be sorted in descending order.

The third control field begins on byte 13 is 2 bytes long, and contains character
(EBCDIC) data. It is to be sorted in ascending order.

Continuing a statement

If you cannot fit your SORT statement (or any other DFSORT control statement)
between columns 2 through 71, you can continue it on the next line. If you end a
line with a comma followed by a blank, DFSORT treats the next line as a
continuation. The continuation can begin anywhere between columns 2 through 71.

For example:

SORT FORMAT=CH,FIELDS=(110,10,A,145,17,A,
1,75,A)

Comment statements

You can mix comment statements with your control statements by starting them
with an asterisk (*) in column 1. DFSORT prints comment statements, but
otherwise ignores them.

For example:

* Sort by department and course number
SORT FIELDS=(110,10,CH,A)

JCL for sorting data sets directly

The job control language (JCL) you need to do a sort depends on whether you run
DFSORT directly or call DFSORT from a program. For now, concentrate on running
DFSORT directly. Information on calling DFSORT from a program is presented in
Chapter 9, “Calling DFSORT from a program,” on page 117.

Chapter 2. Sorting, merging, and copying data sets 17

18

Your operating system uses the JCL you supply with your DFSORT program
control statements to:

* Identify you as an authorized user

* Allocate the necessary resources to run your job
* Run your job

* Return information to you about the results

* Terminate your job
You must supply JCL with every DFSORT job you submit.

Required JCL includes a JOB statement, an EXEC statement, and several DD

statements. The statements you need and their exact form depend upon whether

you:

* Invoke DFSORT with an EXEC statement in the input job stream, or with a
system macro instruction within another program

* Choose to use EXEC statement cataloged procedures to invoke DFSORT

* Choose to specify PARM options on the EXEC statement

* Choose to specify PARM options or control statements in a DFSPARM data set

* Choose to specify control statements in a SYSIN data set

* Want to use program exits to activate routines of your own

Information on when you would choose each of the previous options is explained
in z/OS DFSORT Application Programming Guide.

The JCL statements you need for most jobs are as follows.

/l[jobname JOB
Signals the beginning of a job. At your site, you might be required to
specify information such as your name and account number on the JOB
statement.

[/Istepname EXEC
Signals the beginning of a job step and tells the operating system what
program to run. To run DFSORT, write the EXEC statement like this:

//stepname EXEC PGM=SORT

//STEPLIB DD
The DFSORT program would typically be in a library known to the
system, so the //STEPLIB DD statement would not be needed. However, if
DFSORT is not in a library known to the system, the //STEPLIB DD
statement defines the library containing the DFSORT program

//SYSOUT DD
Defines the data set in which DFSORT messages and control statements are
listed.

/[SORTIN DD
Defines the input data set or concatenated input data sets.

//SORTWKdd DD
Defines a work data set for a sort. Typically not needed, because DFSORT
can allocate work data sets for a sort dynamically.

//SORTOUT DD
Defines the output data set.

z/0OS DFSORT: Getting Started

//ISYSIN DD
Precedes or contains the DFSORT program control statements.

The following is a typical example of JCL to run DFSORT.

//EXAMP JOB A492,PROGRAMMER
//SORT EXEC PGM=SORT
//SYSOUT DD SYSOUT=A
//SORTIN DD DSN=A123456.SORT.SAMPIN,DISP=SHR
//SORTOUT DD DSN=A123456.SORT.SAMPOUT,DISP=0LD
//SYSIN DD =
SORT FORMAT=CH,
FIELDS=(110,10,A,145,17,A,1,75,A)
/*

z/OS DFSORT Application Programming Guide contains additional information about
running DFSORT directly.

So far

So far in this chapter you covered how to write a SORT program control statement and
how to run that sort with JCL statements. The next tutorial explains how to use the
MERGE program control statement to merge two data sets.

Merging data sets

Generally, the reason for merging data sets is to add more records to a data set
that is already sorted.

For example, assume that the bookstore data set is already sorted by course
department and book title (as shown in Table 10), and you want to update it by
merging it with a data set that contains five new records, also sorted by course
department and book title.

Table 10. Sample Bookstore Data Set Sorted by Course Department and Book Title

Book Title Course Department
1 75 110 114

LIVING WELL ON A SMALL BUDGET
PICK'S POCKET DICTIONARY

INTRODUCTION TO BIOLOGY BIOL
STRATEGIC MARKETING BUSIN
SUPPLYING THE DEMAND BUSIN
COMPUTER LANGUAGES COMP
COMPUTERS: AN INTRODUCTION COMP
NUMBERING SYSTEMS COMP
SYSTEM PROGRAMMING COMP
VIDEO GAME DESIGN COMP
EDITING SOFTWARE MANUALS ENGL
INKLINGS: AN ANTHOLOGY OF YOUNG POETS ENGL
MODERN ANTHOLOGY OF WOMEN POETS ENGL
SHORT STORIES AND TALL TALES ENGL
THE COMPLETE PROOFREADER ENGL
CRISES OF THE MIDDLE AGES HIST
EIGHTEENTH CENTURY EUROPE HIST
THE INDUSTRIAL REVOLUTION HIST
ADVANCED TOPICS IN PSYCHOANALYSIS PSYCH
INTRODUCTION TO PSYCHOLOGY PSYCH

Chapter 2. Sorting, merging, and copying data sets 19

For this example, use a new data set such as the one shown in Table 11.

Table 11. Five New Records Sorted by Course Department and Book Title

Book Title Course Department
1 75 10 114
INTERNATIONAL COOKBOOK

WORLD JOURNEYS BY TRAIN

ARTS AND CRAFTS OF ASIA ART
BIOCHEMISTRY BIOL
BEHAVIORAL ANALYSIS PSYCH

To merge data sets, you write a MERGE control statement and several JCL
statements. Whenever you merge data sets, you must make sure that their records
have the same format and that they have been previously sorted by the same
control fields. You can merge up to 100 data sets at a time.

You can use MERGE with all of the other DFSORT control statements.

Writing the MERGE control statement

The format of the MERGE statement is the same as that of the SORT statement. To
merge the bookstore master data set with the data set containing the five new
records, write:

MERGE FORMAT=CH, FIELDS=(110,5,A,1,75,A)

L e

» Department

Table 12 shows the merged output.

Table 12. Sample Bookstore Data Set Merged with Five New Records

Book Title

Course Department

1

75 110 114

20 z/0S DFSORT: Getting Started

Table 12. Sample Bookstore Data Set Merged with Five New Records (continued)

Book Title

Course Department

INTERNATIONAL COOKBOOK

LIVING WELL ON A SMALL BUDGET
PICK'S POCKET DICTIONARY

WORLD JOURNEYS BY TRAIN

ARTS AND CRAFTS OF ASIA
BIOCHEMISTRY

INTRODUCTION TO BIOLOGY

STRATEGIC MARKETING

SUPPLYING THE DEMAND

COMPUTER LANGUAGES

COMPUTERS: AN INTRODUCTION
NUMBERING SYSTEMS

SYSTEM PROGRAMMING

VIDEO GAME DESIGN

EDITING SOFTWARE MANUALS
INKLINGS: AN ANTHOLOGY OF YOUNG POETS
MODERN ANTHOLOGY OF WOMEN POETS
SHORT STORIES AND TALL TALES

THE COMPLETE PROOFREADER

CRISES OF THE MIDDLE AGES
EIGHTEENTH CENTURY EUROPE

THE INDUSTRIAL REVOLUTION
ADVANCED TOPICS IN PSYCHOANALYSIS
BEHAVIORAL ANALYSIS

INTRODUCTION TO PSYCHOLOGY

ART
BIOL
BIOL
BUSIN
BUSIN
COMP
COMP
COMP
COMP
COMP
ENGL
ENGL
ENGL
ENGL
ENGL
HIST
HIST
HIST
PSYCH
PSYCH
PSYCH

JCL for merging data sets directly

As in a sort, the JCL you need depends on whether you run DFSORT directly or
call it from a program. This chapter only discusses running DFSORT directly.

The JCL needed for a merge is the same as that for a sort, with the following

exceptions:

* You do not need dynamic allocation of work data sets or SORTWKdd DD

statements.

* Instead of the SORTIN DD statement, you use SORTINnn DD statements to
define the input data sets. The SORTINnn DD statements name the input data
sets, and tell how many data sets will be merged. You need one SORTINnn DD
statement for each data set being merged. nn in SORTINn#n is a number from 00
to 99. Thus, if you wanted to merge 5 data sets, you would typically use DD
statements for SORTINO1, SORTIN02, SORTIN03, SORTIN04 and SORTINO5.

To merge the pre-sorted bookstore data set and the data set containing the new
records, code the following JCL statements for this example. The new data set is
called A123456.NEW and the sorted version of the bookstore data set is called
A123456.MASTER. For this example, it is assumed that the input data sets are
cataloged and that the output data set will be cataloged.

Chapter 2. Sorting, merging, and copying data sets 21

//EXAMP JOB A492,PROGRAMMER
//MERGE EXEC PGM=SORT
//SYSOUT DD SYSOUT=A
//SORTINO1 DD DSN=A123456.MASTER,DISP=SHR
//SORTING2 DD DSN=A123456.NEW,DISP=SHR
//SORTOUT DD DSN=A123456.SORT.SAMPOUT,DISP=0LD
//SYSIN DD *

MERGE FIELDS=(110,5,CH,A,1,75,CH,A)
/*

example : Merging UTF16 data with format
MERGE FIELDS=(25,400,A,600,100,D),FORMAT=UTF16

FIELDS

The first three values describe the major control field. It begins on byte 25 of each
record, is 400 bytes long, and contains a 16 bit encoding Unicode Transformation
Format (UTF16) data, and is to be merged in ascending order.

The next three values describe the second control field. It begins on byte 600, is 100
bytes long, contains a 16 bit encoding Unicode Transformation Format (UTF16)
data, and is to be merged in descending order.

FORMAT

FORMAT=UTF16 is used to supply UTF16 format for the p,m,s fields and is
equivalent to specifying p,m,UTF16,s for these fields.

In Chapter 9, “Calling DFSORT from a program,” on page 117, you learn how to
merge data sets when calling DFSORT from a program.

So far

So far in this chapter you covered how to write both the SORT and MERGE program
control statements and how to process those control statements using JCL statements. Now
you continue with the tutorial on COPY.

VB data set considerations

A record in a VB data set looks like this:

A record in a VB data set looks like this:

VB data set
record

RDW Fixed data Variable data

The RDW (Record Descriptor Word) is a 4-byte binary field with the length of the
record in the first two bytes. Fixed data consists of data bytes that are present in
every record. Variable data consists of one or more data bytes that may or may not
be present in every record, so different records can have different lengths up to the
maximum logical record length (LRECL) for the data set.

Starting positions

For FB data sets, the first data byte starts in position 1. However, for VB data sets,
the RDW is in positions 1-4, so the first data byte starts in position 5. So when you
code your control fields for sorting or merging VB data sets, remember to add 4 to

22 z/0S DFSORT: Getting Started

the starting position to account for the 4-byte RDW. For example, the following
SORT statement specifies a CH control field in the third through fifth data bytes of
a VB record:

SORT FIELDS=(7,3,CH,A)

Short control fields

Because VB records have a fixed part and a variable part, it is possible for part of a
control field to be missing. Consider this SORT statement:

SORT FIELDS=(21,12,CH,A)

The control field is in positions 21-32. If your VB records have 25 fixed data bytes
and LRECL=45, the records can vary in length from 29 bytes (4-byte RDW, 25 bytes
of fixed data, and 0 bytes of variable data) to 45 bytes (4-byte RDW, 25 bytes of
fixed data, and 16 bytes of variable data). Records 32 bytes or longer include the
entire control field. But records less than 32 bytes have "short" control fields, that
is, they are missing some of the bytes at the end of the control field. You cannot
validly sort or merge on control fields with missing bytes because missing bytes
have no values.

If you know you have VB records with short control fields, you can specify the
VLSHRT option, if appropriate, to prevent DFSORT from terminating. For example:

OPTION VLSHRT
SORT FIELDS=(21,12,CH,A)

VLSHRT tells DFSORT that you want to temporarily replace any missing control
field bytes with binary zeros (the zeros are not kept for the output record), thus
allowing DFSORT to validly sort or merge on the short control fields.

Attention: If NOVLSHRT is in effect, DFSORT terminates if it finds a short
control field in any VB record.

For more information on DFSORT's VLSHRT option, see z/OS DFSORT Application
Programming Guide.

Copying data sets
With DFSORT you can copy data sets directly without performing a sort or merge.

You can use COPY with all of the other DFSORT control statements except SUM.
DFSORT can select and reformat the specific data sets you want to copy by using
the control statements covered in later chapters.

You write a copy statement by specifying COPY on the SORT, MERGE, or OPTION
statement.

Specifying COPY on the SORT, MERGE, or OPTION statement

The SORT and MERGE statements change very little when you specify COPY. Just
replace the information you usually put in parentheses with the word COPY:

SORT FIELDS=COPY
MERGE FIELDS=COPY

You can also specify COPY on the OPTION statement:

Chapter 2. Sorting, merging, and copying data sets 23

24

OPTION COPY

All three of these statements have identical results.

JCL for copying data sets directly

The JCL for a copy application is the same as for a sort, except that you do not
need dynamic allocation of work data sets or SORTWKdd DD statements.

This sample JCL will copy the SORT.SAMPIN data set to a temporary output data
set using the OPTION COPY statement:

//EXAMP JOB A492,PROGRAMMER
//COPY EXEC PGM=SORT
//SYSOUT DD SYSOUT=A
//SORTIN DD DSN=A123456.SORT.SAMPIN,DISP=SHR
//SORTOUT DD DSN=&&TEMP,DISP=(,PASS),SPACE=(CYL, (5,5)),UNIT=SYSDA
//SYSIN DD =
OPTION COPY
/*

You can use SORT FIELDS=COPY or MERGE FIELDS=COPY instead of OPTION
COPY to produce the same results.

Summary

In this chapter, you covered the following concepts:
* Writing the SORT, COPY, or MERGE program control statements

* Using JCL statements to process your sort, copy, or merge

As you continue with the tutorials, you will cover two methods of obtaining subsets of
your input data set for your output data set. Chapter 3, “Including or omitting records,” on
page 25 covers allowable comparison operators, various types of constants, substring
search, and padding and truncation rules for INCLUDE and OMIT.

z/0OS DFSORT: Getting Started

Chapter 3. Including or omitting records

Often, you need only a subset of the records in a data set for an application. This
chapter explains how to include or omit only specific records from the input data
set for sorting, copying or merging to the output data set.

By removing unneeded records with an INCLUDE or OMIT statement before
sorting, copying or merging, you can increase the speed of the sort, copy or
merge. The fewer the records, the less time it takes to process them.

You select a subset of the records in an input data set by:
¢ Using an INCLUDE control statement to collect wanted records
* Using an OMIT control statement to exclude unwanted records

* Using an INCLUDE or OMIT parameter on an OUTFIL statement to collect
wanted records or exclude unwanted records, respectively. Different INCLUDE
and OMIT parameters can be used on different OUTFIL statements.

Your choice of an INCLUDE or OMIT statement depends on which is easier and
more efficient to write for a given application. You cannot use both statements
together.

The information presented in this chapter for the INCLUDE and OMIT statements
also applies to the INCLUDE and OMIT parameters of the OUTFIL statement,
except that:

¢ OUTFIL is processed after sorting, copying or merging
* The FORMAT=f parameter cannot be used for OUTFIL

OUTFIL is discussed later in Chapter 7, “Creating multiple output data sets and
reports,” on page 83.

You select the records you want included or omitted by either:
1. Comparing the contents of a field with one of the following:

Another field
For example, you can select records for which the author’s last name is
the same as the instructor’s last name.

A constant
The constant can be a character string, a decimal number, a
hexadecimal string, or the current date, a future date or a past date. For
example, you can select records that have the character string “ HIST”
in the department field.

”oou /7]

2. Testing a field for “numerics”, “alphanumerics”, “non-numerics”or “non-
alphanumerics”. For example, you can select records that have non-numerics in
the Employees field or Revenue field, or you can select records that have only
uppercase (A-Z) and lowercase (a-z) characters in a specific field.

You can also combine two or more conditions with logical ANDs and ORs. For
example, you can select records that have either “HIST” or “PSYCH” in the
department field.

INCLUDE and OMIT both offer powerful substring search capabilities.

© Copyright IBM Corp. 1983, 2017 25

Including or Omitting Records

In addition, INCLUDE and OMIT allow you to select records based on the results
of bit logic tests and two-digit year date comparisons. These two features are not
discussed in this document, but details can be found in z/OS DFSORT Application
Programming Guide.

Writing the INCLUDE statement

26

Suppose it is the end of the year and you want to sort, by title, only the books that
you need to reorder for the coming year. If the number of copies sold this year for
a particular book is greater than the number in stock, you can assume you need to
order more copies.

An INCLUDE statement that selects only the books you need to order looks like

INCLUDE COND=(166,4,GT,162,4),FORMAT=BI

» Number in stock

» Number sold
this:

Here are the steps for writing this INCLUDE statement:
Table 13. Steps to Create the INCLUDE Statement for Books You Need to Order

Step Action

1 Leave at least one blank and type INCLUDE

2 Leave at least one blank and type COND=

3 Type, in parentheses, and separated by commas:

1. The location, length, and data format of the number sold field

2. The comparison operator GT (comparison operators are shown in Figure 1)
for greater than

3. The location, length, and data format of the number in stock field.

You can select from the following comparison operators:

Comparison Operator
Meaning

EQ Equal to
NE Not equal to
GT Greater than

GE Greater than or equal to
LT Less than
LE Less than or equal to

Figure 1. Comparison Operators

You can place the SORT statement either before or after the INCLUDE statement.
Control statements do not have to be in any specific order. However, it is good
documentation practice to code them in the order in which they are processed. For
a flowchart showing the order in which all the control statements are processed,
see Appendix C, “Processing order of control statements,” on page 193.

z/0OS DFSORT: Getting Started

INCLUDE COND=(166,4,BI,GT,162,4,BI)

SORT FIELDS=(1,75,CH,A)

Including or Omitting Records

This sorts the selected subset of the input records by title in ascending order.
Table 14 shows the sorted data set.

Table 14. Books for which Number Sold is greater than Number in Stock

Book Title Number In Stock Number Sold
1 75 162 165 166 169
ADVANCED TOPICS IN PSYCHOANALYSIS 1 12
COMPUTER LANGUAGES 5 29
COMPUTERS: AN INTRODUCTION 20 26
CRISES OF THE MIDDLE AGES 14 17
EDITING SOFTWARE MANUALS 13 32
INKLINGS: AN ANTHOLOGY OF YOUNG POETS 2 32
INTRODUCTION TO BIOLOGY 6 11
MODERN ANTHOLOGY OF WOMEN POETS 1 26
NUMBERING SYSTEMS 6 27
STRATEGIC MARKETING 3 35
SUPPLYING THE DEMAND 0 32
SYSTEM PROGRAMMING 4 23
THE COMPLETE PROOFREADER 7 19

Suppose you want to reduce the subset of input records even further, to sort only

the books you need to order from COR publishers. In this case, two conditions

must be true:

* The number sold is greater than the number in stock.
* The book is published by COR.

To add the second condition, expand the INCLUDE statement by adding a logical

AND, and compare the contents of the publisher field to the character string “
COR” (see “Writing constants” on page 30 for details how to specify constants).
Because the publisher field is 4 bytes long, “COR” will be padded on the right

with one blank.

INCLUDE COND=(166,4,BI,GT,162,4,BI,AND,106,4,CH,EQ,C'COR")

SORT FIELDS=(1,75,CH,A)

Table 15 shows the result.

Table 15. COR Books for which Number Sold is greater than Number in Stock

Book Title Publisher Number In Stock Number Sold
1 75 106 109 162 165 166 169
CRISES OF THE MIDDLE AGES COR 14 17
INKLINGS: AN ANTHOLOGY OF YOUNG POETS COR 2 32
MODERN ANTHOLOGY OF WOMEN POETS COR 1 26
SUPPLYING THE DEMAND COR 0 32

As another example, you might sort only the books for courses 00032 and 10347 by
writing the INCLUDE and SORT statements as follows:

INCLUDE COND=(115,5,CH,EQ,C'00032"',0R,115,5,CH,EQ,C'10347")

SORT FIELDS=(115,5,CH,A)

Chapter 3. Including or omitting records

27

Including or Omitting Records

Note: In the previous example, you cannot substitute C'32' for C'00032', because
character constants are padded on the right with blanks. DFSORT uses the
following rules for padding and truncation:

Padding
adds fillers in data, usually zeros or blanks

Truncation
deletes or omits a leading or trailing portion of a string

In comparisons, the following rules apply:

* In a field-to-field comparison, the shorter field is padded as appropriate (with
blanks or zeros).
* In a field-to-constant comparison, the constant is padded or truncated to the

length of the field. Decimal constants are padded or truncated on the left.
Character and hexadecimal constants are padded or truncated on the right.

Writing the OMIT statement

Suppose that you want to sort, by title, all the books used for courses but not those
for general reading. In this case, you can use an OMIT statement that excludes
records containing a blank in the course department field.

The format of the OMIT statement is the same as that of the INCLUDE statement.
To exclude the general reading books, write:

OMIT COND=(110,5,CH,EQ,C' ')
SORT FIELDS=(1,75,CH,A)

Table 16 shows the sorted data set.
Table 16. Sorted Data Set without Books Not Required for Classes

Book Title Course Department
1 75 110 114
ADVANCED TOPICS IN topCHOANALYSIS PSYCH
COMPUTER LANGUAGES COMP
COMPUTERS: AN INTRODUCTION COMP
CRISES OF THE MIDDLE AGES HIST
EDITING SOFTWARE MANUALS ENGL
EIGHTEENTH CENTURY EUROPE HIST
INKLINGS: AN ANTHOLOGY OF YOUNG POETS ENGL
INTRODUCTION TO BIOLOGY BIOL
INTRODUCTION TO PSYCHOLOGY PSYCH
MODERN ANTHOLOGY OF WOMEN POETS ENGL
NUMBERING SYSTEMS COMP
SHORT STORIES AND TALL TALES ENGL
STRATEGIC MARKETING BUSIN
SUPPLYING THE DEMAND BUSIN
SYSTEM PROGRAMMING COMP
THE COMPLETE PROOFREADER ENGL
THE INDUSTRIAL REVOLUTION HIST
VIDEO GAME DESIGN COMP

28 z/0S DFSORT: Getting Started

Including or Omitting Records

Allowable comparisons for INCLUDE and OMIT

Table 17 and Table 18 show the allowable field-to-field and field-to-constant
comparisons for the data formats most commonly used with INCLUDE and OMIT.
Refer to z/OS DFSORT Application Programming Guide for complete details of all of
the data formats you can use with INCLUDE and OMIT.

Table 17. Allowable Field-to-Field Comparisons

Field
Format BI FI CH D PD FS UFF SFF

BI 4 4

FI -
CH - v
ZD - -

PD 4 4

FS v - v
UFF
SFF - - v

\
\
\

Table 18. Allowable Field-to-Constant Comparisons

Field Format Character String Hexadecimal String Decimal Number

BI v - v

FI 4

CH I I
ZD

PD

FS

UFF

SFF

AVAVNANAWRY

For example, if you want to sort by author’s name and include only those books
whose author’s last name begins with “M,” you can compare the contents of byte
76 (the first byte of the author’s last name), which is in character format, with
either a character or hexadecimal string:

INCLUDE COND=(76,1,CH,EQ,C'M")
SORT FIELDS=(76,15,CH,A)

or

INCLUDE COND=(76,1,CH,EQ,X'4D")
SORT FIELDS=(76,15,CH,A)

Also, if you want to sort by number in stock only the books for which the number

in stock is less than 10, you can compare the contents of the number in stock field,
which is in binary format, to a decimal constant or a hexadecimal string:

Chapter 3. Including or omitting records 29

Including or Omitting Records

INCLUDE COND=(162,4,BI,LT,10)
SORT FIELDS=(162,4,BI,A)

or

INCLUDE COND=(162,4,BI,LT,X'0000000A")
SORT FIELDS=(162,4,BI,A)

For the hexadecimal constant, remember the padding and truncation rules. If you
specify X'0A’, the string is padded on the right instead of the left. For the decimal
constant, you can use 10 or +10, and you do not have to worry about padding or
truncation.

Writing constants

30

The formats for writing character strings, hexadecimal strings, and decimal
numbers are shown later in this section.

Character strings

The format for writing a character string is:

C'X...X
where x is an EBCDIC character. For example, C'FERN".

If you want to include a single apostrophe in the string, you must specify it as two
single apostrophes. For example, O’'NEILL must be specified as C'O"NEILL'.

You can use special keywords to specify a character string for the current date of
the run in various forms, as detailed in z/OS DFSORT Application Programming
Guide. For example, if you want to select records in which a 10-character date in
the form C'yyyy/mm/dd' starting in position 42 equals today's date, write:

INCLUDE COND=(42,10,CH,EQ,DATEL(/))

You can also use special keywords to specify a character string for a future or past
date (relative to the current date of the run) in various forms, as detailed in z/OS
DFSORT Application Programming Guide. For example, if you want to select records
in which a 10-character date in the form C'yyyy/mm/dd' starting in position 42 is
between 30 days in the past and 30 days in the future, write:

INCLUDE COND=(42,10,CH,GE,DATEL(/)-30,AND,42,10,CH,LE,DATEL(/)+30)

Hexadecimal strings

The format for writing a hexadecimal string is:

X'yy...yy

where yy is a pair of hexadecimal digits. For example, X'7FB0'.

Decimal numbers

The format for writing a decimal number is:
n...n or #n...n
where n is a decimal digit. Examples are 24, +24, and -24.

Decimal numbers must not contain commas or decimal points.

z/0OS DFSORT: Getting Started

Including or Omitting Records

You can use special keywords to specify a decimal number for the current date of
the run in various forms, as detailed in z/OS DFSORT Application Programming
Guide. For example, if you want to select records in which a 4-byte packed decimal
date of P'yyyyddd' (hex yyyydddC) starting in position 28 equals today's date,
write:

INCLUDE COND=(28,4,PD,EQ,DATE3P)

You can use special keywords to specify a decimal number for a future or past
date (relative to the current date of the run) in various forms, as detailed in z/OS
DFSORT Application Programming Guide. For example, if you want to select records
in which a 4-byte packed decimal date of P'yyyyddd' (hex yyyydddC) starting in
position 28 is between 30 days in the past and 30 days in the future, write:

INCLUDE COND=(28,4,PD,GE,DATE3P-30,AND,28,4,PD,LE,DATE3P+30)

Numeric tests for INCLUDE and OMIT

Suppose you think that some of the values in the Employees field might contain
invalid numeric data, and you want to select the records with those values, if any.
Each byte of the 4-byte Employees field should contain '0' through '9'; you would
consider any other character, such as 'A’ or . to be invalid. '1234' is a valid
numeric value; it contains all numerics. '12.3' is an invalid numeric value; it
contains a non-numeric. You can use one of the numeric test capabilities of the
INCLUDE statement to collect the records you want as follows:

INCLUDE COND=(18,4,FS,NE,NUM)

If the value in the field (18,4,FS) is not equal (NE) to numerics (NUM), the record
is included. The records in the output data set will be those in which the field has
non-numerics (a character other than '0'-'9" appears somewhere in the field).

Use NUM to indicate a test for numerics or non-numerics.
Use EQ to test for numerics, or NE to test for non-numerics.

Use FS format for the field if you want to test for character numerics ('0'-'9" in
every byte).

Use ZD format for the field if you want to test for zoned decimal numerics ('0'-'9'
in all non-sign bytes; X'FO'-X'F9', X'D0'-X'D9' or X'C0'-X'C9'" in the sign byte).

Use PD format for the field if you want to test for packed decimal numerics (0-9
for all digits; F, D or C for the sign).

Here's an INCLUDE statement that only includes records in which the Revenue
field and Profit field have packed decimal numerics (that is, there are no invalid
packed decimal values in these fields).

INCLUDE COND=(22,6,PD,EQ,NUM,AND,28,6,PD,EQ,NUM)

Alphanumeric Tests for INCLUDE and OMIT

Testing for alphanumerics or non-alphanumerics is similar to testing for numerics
or non-numerics. Use Bl for the format. Use EQ to test for alphanumerics or NE to
test for non-alphanumerics. Instead of NUM, use one of the following
corresponding to the set of alphanumeric characters you need:

* UC: Uppercase characters (A-Z)
* LC: Lowercase characters (a-z)

Chapter 3. Including or omitting records 31

Including or Omitting Records

* MC: Mixed case characters (A-Z, a-z)

* UN: Uppercase and numeric characters (A-Z, 0-9)

* LN: Lowercase and numeric characters (a-z, 0-9)

* MN: Mixed case and numeric characters (A-Z, a-z, 0-9)

Here is an INCLUDE statement that only includes records which have uppercase
or numeric characters in positions 11 to 15:

INCLUDE COND=(11,5,BI,EQ,UN)

If every position from 11 to 15 in a record has A-Z or 0-9, that record is included. If
any position from 11 to 15 in a record does not have A-Z or 0-9, that record is not
included. So a record with 'BO3RS' in 11 to 15 would be included, whereas records
with 'B03rS' or 'B,ABC' would not be included.

Here's an INCLUDE statement that removes any record that has only A-Z or a-z in
positions 1 to 8:

INCLUDE COND=(1,8,BI,NE,MC)

So a record with 'RsTUVxyz' in 1-8 would not be included, whereas a record with
‘Rs$UVxyz' in 1-8 would be included.

Substring search for INCLUDE and OMIT

32

Suppose you want to select only the books for the Biology, History, Business and
Psychology departments. Based on what you learned earlier, you can select those
books using this INCLUDE statement:
INCLUDE COND=(106,5,CH,EQ,C'BIOL',OR,
106,5,CH,EQ,C"'HIST',0OR,
106,5,CH,EQ,C'BUSIN',0R,
106,5,CH,EQ,C'PSYCH')

But the more departments you want to include, the more typing you have to do.
Instead, you can use one of the substring search capabilities of INCLUDE and
OMIT to write the statement in a simpler form as:

INCLUDE COND=(106,5,SS,EQ,C'BIOL ,HIST ,BUSIN,PSYCH')

With substring search (SS format), you only write the field once and write the
character constant so it includes all of the strings you want to search for. If the
value in the field matches any of the strings (for example, "BUSIN"), the record is
included. If the value in the field does not match any of the strings, the record is
omitted.

The length of each string must match the length of the field. Because the
Department field is 5 characters, you must add a blank at the end of "BIOL" and
"HIST", which are each four characters, but not for "BUSIN" and "PSYCH", which
are each five characters.

The other way to use substring search is by searching for a constant within a field.
For example, if you wanted to select only the books with "INTRODUCTION" in
their Title, you could use the following INCLUDE statement:

INCLUDE COND=(1,75,SS,EQ,C'INTRODUCTION')

The books selected for output would be:

z/0OS DFSORT: Getting Started

Including or Omitting Records

COMPUTERS: AN INTRODUCTION
INTRODUCTION TO PSYCHOLOGY
INTRODUCTION TO BIOLOGY

VB data set considerations

The same VB data set considerations you learned about previously for the SORT
and MERGE statements also apply to the INCLUDE and OMIT statements.

Starting positions

When you code your compare fields for including or omitting VB records,
remember to add 4 to the starting position to account for the 4-byte RDW. For
example, the following INCLUDE statement compares a PD field in the third
through fifth data bytes of a VB record to a PD field in the sixth through eighth
bytes of a VB record.

INCLUDE COND=(7,3,PD,EQ,10,3,PD)

Short control fields

If you know you have VB records with short compare fields, you can specify the
VLSCMP option, if appropriate, to prevent DFSORT from terminating. For
example:

OPTION COPY,VLSCMP
INCLUDE COND=(21,8,CH,EQ,C'Type 200')

VLSCMP tells DFSORT that you want to temporarily replace any missing compare

field bytes with binary zeros, thus allowing the short fields to be validly compared
(the zeros are not kept for the output records). In this example, records less than 28
bytes are not included because the binary zeros added for the missing bytes in the

field prevent it from being equal to "Type 200'.

Another way you can prevent DFSORT from terminating for VB records with short
compare fields, if appropriate, is by specifying the VLSHRT option. For example:

OPTION COPY,VLSHRT
INCLUDE COND=(21,8,CH,EQ,C'Type 200')

VLSHRT tells DFSORT to treat any comparison involving a short field as false. In
this example, any records less than 28 bytes are not included.

Attention: If NOVLSCMP and NOVLSHRT are in effect, DFSORT terminates if it
finds a short compare field in any VB record.

For more information on DFSORT's VLSCMP and VLSHRT options, see z/OS
DFSORT Application Programming Guide.

Summary

This chapter covered three ways to select only a subset of the input records to
make processing more efficient. You wrote INCLUDE and OMIT statements and
learned about allowable comparison operators, various types of constants, numeric
tests, and substring search.

Chapter 3. Including or omitting records 33

34 z/0S DFSORT: Getting Started

Chapter 4. Summing records

Suppose that the English department wants to know the total price of books for all
its courses. You can include just the records for the English department by using
the INCLUDE statement, and add the book prices together by using the SORT and
SUM statements.

On the SUM control statement, you specify one or more numeric fields that are to
be summed whenever records have equally collating control fields (control fields
are specified on the SORT statement). The data formats you can specify on the
SUM statement are binary (BI), fixed-point (FI), packed decimal (PD), zoned
decimal (ZD) and floating-point (FL).

To sum the prices for just the records for the English department, specify the price
field on the SUM statement and the department field on the SORT statement. The
INCLUDE statement selects just the records for the English department before
SUM and SORT are processed, making the department field equal for all of the
included records, and allowing the prices to be summed. (For a flowchart showing
the order in which the INCLUDE, SUM, and SORT statements are processed, see
Appendix C, “Processing order of control statements,” on page 193.)

When you sum records, keep in mind that two types of fields are involved:

Control fields
specified on the SORT statement

Summary fields
specified on the SUM statement

The contents of the summary fields are summed for groups of records with the
same control fields (often called "duplicate" records).

Writing the SUM statement

A SUM statement that sums the prices would look like this:

SUM FIELDS=(170,4,Bl)

Price

Here are the steps for writing this SUM statement:
Table 19. Steps to Create the SUM Statement for Prices

Step Action

1 Leave at least one blank and type SUM

2 Leave at least one blank and type FIELDS=

3 Type, in parentheses and separated by commas, the location, length, and data

format of the price field.

The INCLUDE, SORT, and SUM statements are as follows:

© Copyright IBM Corp. 1983, 2017 35

Summing Records

INCLUDE COND=(116,5,CH,EQ,C'ENGL")
SORT FIELDS=(110,5,CH,A)
SUM FIELDS=(170,4,BI)

When the prices are summed, the final sum appears in the price field of one
record, and the other records are deleted. Therefore, the result (shown in Table 20)
is only one record, containing the sum. You can control which record appears if
you specify that records keep their original order. For the examples, the default is
for records with equally collating control fields to appear in their original order
(EQUALS in effect). When summing records keeping the original order, DFSORT
chooses the first record to contain the sum.

Table 20. Sum of Prices for English Department

Book Title Course Department Price

1 75 110 114 170 173
INKLINGS: AN ANTHOLOGY OF YOUNG POETS! ENGL? 4640°
Note:

! Some of the fields in your summation record might not be meaningful, such as the book title field in Table 20. In
the next chapter, you will learn two ways to leave out fields that are not meaningful.

% Specified as a control field.

® Specified as a summary field.

Suppose now that the English department wants to know the total price of books
for each of its courses. In this case, you still select only the English department’s
records using INCLUDE, and specify the price field on the SUM statement, but
you specify the course number on the SORT statement.

INCLUDE COND=(110,5,CH,EQ,C'ENGL")
SORT FIELDS=(115,5,CH,A)
SUM FIELDS=(170,4,BI)

» Price

Table 21 shows the result, one record per course.

Table 21. Sum of Prices for English Department

Book Title Course Number Price

1 75 115 119 170 173
SHORT STORIES AND TALL TALES 10054 1520
EDITING SOFTWARE MANUALS 10347 2075
INKLINGS: AN ANTHOLOGY OF YOUNG POETS 10856 1045

For an example using two summary fields, assume that for inventory purposes
you want to sum separately the number of books in stock and the number sold for
each of the publishers.

For this application, specify the publisher as the control field on the SORT

statement and the number in stock and number sold as summary fields on the
SUM statement. You want to use all of the records in the input data set this time,

36 z/0S DFSORT: Getting Started

Summing Records

so you don't need to code an INCLUDE or OMIT statement. (SORT and SUM can
be used with or without an INCLUDE or OMIT statement.)

SORT FIELDS=(106,4,CH,A)
SUM FIELDS=(162,4,166,4),FORMAT=BI

» Number sold

» Number in stock

Table 22 shows the result, one record per publisher.

Table 22. Sum of Number in Stock and Number Sold for Each Publisher

Book Title Publisher Number In Stock Number Sold
1 75 106 109 162 165 166 169
LIVING WELL ON A SMALL BUDGET COR 103 161
COMPUTER LANGUAGES FERN 19 87
VIDEO GAME DESIGN VALD 42 97
COMPUTERS: AN INTRODUCTION WETH 62 79

Suppressing records with duplicate control fields

Apart from summing values, you can also use SUM to delete records with
duplicate control fields (often called "duplicate records").

For example, you might want to list the publishers in ascending order, with each
publisher appearing only once. If you use only the SORT statement, COR appears
seven times (because seven books in the file are published by COR), FERN appears
four times, VALD five times, and WETH four times.

By specifying FIELDS=NONE on the SUM statement, DFSORT writes only one
record per publisher, as follows:

SORT FIELDS=(106,4,CH,A)
SUM FIELDS=NONE

Table 23 shows the result.

Table 23. List of Publishers, Deleting Duplicates

Book Title Publisher
1 75 106 109
LIVING WELL ON A SMALL BUDGET COR
COMPUTER LANGUAGES FERN
VIDEO GAME DESIGN VALD
COMPUTERS: AN INTRODUCTION WETH

In Chapter 12, “Using the ICETOOL utility,” on page 135, you will learn how to
use ICETOOL's powerful SELECT, OCCUR and SPLICE operators to perform
many more functions involving duplicate and non-duplicate records.

37

Chapter 4. Summing records

Summing Records

Handling overflow

When a sum becomes larger than the space available for it, overflow occurs. For
example, if a 2-byte binary field (unsigned) contains X' FFFF' and you add X'0001'
to it, overflow occurs, because the sum requires more than two bytes.

FFFF

0001
10000

If overflow occurs, the summary fields in the two records involved are not added
together. That is, the records are kept unchanged; neither record is deleted.

In some cases, you can correct overflow by padding the summary fields with
zeros, using the INREC control statement. “Preventing overflow when summing
values” on page 71 shows you how to do this.

VB data set considerations

The same VB data set considerations you learned about previously for the SORT,
MERGE, INCLUDE and OMIT statements also apply to the SUM statement.

Starting positions

When you code your summary fields for VB records, remember to add 4 to the
starting position to account for the 4-byte RDW. For example, the following SUM
statement specifies a PD summary field in the third through fifth data bytes of a
VB record:

SUM FIELDS=(7,3,PD)

Short summary fields

If you know you have VB records with short summary fields, you can specify the
VLSHRT option, if appropriate, to prevent DFSORT from terminating. For example:

OPTION VLSHRT
SORT FIELDS=(6,2,CH,A)
SUM FIELDS=(21,8,2ZD)

VLSHRT tells DFSORT to leave records with short summary fields unsummed.
That is, when one of the two records involved in a summary operation has a short
summary field, the records are kept unchanged; neither record is deleted.

Attention: If NOVLSHRT is in effect, DFSORT terminates if it finds a short
summary field in any VB record.

For more information on DFSORT's VLSHRT option, see z/OS DFSORT Application
Programming Guide.

Summary

This chapter covered summing records in your data set. It explained how to use the SUM
statement to sum records with equal control fields, and how to suppress any records with
duplicate control fields. Now, you continue with tutorials about using OUTREC and

INREC to reformat your data sets.

38 z/0S DFSORT: Getting Started

